Arterial Spin Labelling:
Non-invasive measurement
of perfusion

Michael A. Chappell
michael.chappell@eng.ox.ac.uk
www.ibme.ox.ac.uk/QuBIC

Institute of Biomedical Engineering & Oxford Centre for Functional MRI of the Brain
University of Oxford.
Perfusion

• Perfusion is a measurement of delivery of blood to capillary bed
 ➔ Related to nutrient delivery to cells and waste removal.
 ➔ Altered by task activity.
 ➔ Changes in disease.

• Quantity of blood *delivered* per unit of tissue per unit of time
 ➔ ml blood / 100g tissue / min
 ➔ (Dimensions of [T]⁻¹)
 ➔ Grey matter ‘magic’ number: 60 ml/100g/min

• Cerebral Blood Flow (CBF) is a misleading name!

• To image perfusion we need a tracer
 ➔ ASL uses blood-water as an endogenous tracer.
Perfusion

- Why use ASL?
 - A direct measure of perfusion changes - physiological response.
 - (Potentially) fully quantitative - possible to calculate absolute perfusion.
 - Good for low frequency or ‘one-off’ designs.
 - Large ‘effect size’.

- What are the challenges?
 - SNR
 - Temporal sampling - TR and the need for label and control scans.
• ASL is not BOLD!
 ➡ CBF change is a component of the BOLD signal.
 ➡ ASL can make absolute measurements under different conditions.
 ➡ You DON'T need a interleaved design with ASL.
 ➡ ‘Rest’ and ‘task’ don’t even need to be in the same session.

• ASL and BOLD can be combined
 ➡ Dual (multi-) echo ASL/BOLD

Perfusion

[Diagram showing baseline and activated states with blood flow changes indicated]

Simple paradigm design:
- stimulus vs baseline
- constant stimulus “intensity”
- constant block lengths
- many repetitions: ABABA

Need baseline (rest) condition to measure change:

A (baseline) A (baseline) A (baseline)
B (stimulus) B (stimulus) A (baseline)

Time (TRs): 0 1 2 3 4 5

Stimulus example: flashing chequerboard

Arterial Spin Labelling : M.A. Chappell
FSL for Arterial Spin Labelling

- **BASIL**: a toolset for resting ASL quantification:
 - CBF quantification.
 - Calibration / M0 estimation
 - Registration.
 - Partial volume correction.

- Command line tools
 - oxford_asl, basil, asl_reg, asl_calib

- Graphical User Interface
 - asl_gui

- **NEW VERSION!** available as a ‘pre-release’ - you will be using this version on the course.
What Have I Got Here!?

- What I have...

- What I want...

- What should I do?

I just want to do something simple/easy!

I must have absolute perfusion (ml/100g/min)

Command line instructions here for future reference...
Outline

• Acquisition

• Keep it simple!
 ➡ Perfusion weighted images.

• Quantitative perfusion:
 ➡ Kinetics: A short course in tracer kinetics.
 ➡ Calibration: Measuring arterial blood magnetization.

• Preparing for group analysis.

• Advanced quantification:
 ➡ Distortion Correction
 ➡ Macro vascular contamination
 ➡ Partial Volume Correction
A tracer experiment with an endogenous tracer - **blood water**.

Arterial Spin Labelling

- Label blood by magnetic inversion
- Wait for blood to reach brain
- Acquire image of brain

LABEL

CONTROL
Spot the difference?

LABEL

CONTROL

Perfusion is $\sim 60 \text{ ml/100g/min} = 0.01 \text{ s}^{-1}$

Signal is $\sim 1\text{-}2\%$
ASL Acquisition

- Nuts & bolts: Labelling

pASL: Pulsed ASL
- Label a region in a single pulse

cASL: Continuous ASL
- Label blood flowing through a plane for some time

pcASL: Pseudo-Continuous ASL
- pcASL uses pulses and is more widely available

Label blood by magnetic inversion
ASL Acquisition

- Nuts & bolts: Inflow time

Wait for blood to reach brain
Label blood by magnetic inversion

pcASL

- Post-labeling delay (PLD)

pASL

- Inversion time (TI)
ASL Acquisition

- Nuts & bolts: Bolus/label duration

pcASL
- Label duration (τ)
- Post-labeling delay (PLD)

pASL
- Label duration is undefined in pASL.
- QUIPSSII pulses ‘cut off’ the end of the labeled bolus.

Wait for blood to reach brain

Label blood by magnetic inversion
ASL Acquisition

- Nuts & Bolts: Background Suppression

pcASL

- **cASL label**
- Background suppression pulse(s)
- Imaging

Wait for blood to reach brain

Label blood by magnetic inversion

- Suppress signal from static tissue
- Reduce subtraction artefacts
- Reduce sensitivity to motion and physiological noise
ASL Acquisition

- **Nuts & Bolts: Readout**

 Label blood by magnetic inversion

 Wait for blood to reach brain

 Aquire image of brain

3D: GRASE/RARE

- Higher SNR
- Long echo-train: blurring
- Muti-shot/segmented approaches

2D: EPI (Multi-slice)

- Different PLD for each slice
ASL Acquisition

- The ASL ‘white paper’ - a good place to begin:
 - **Use pcASL where possible**
 - Label duration 1800 ms
 - Post labeling delay ~1800 ms
 - **Otherwise pASL with QUIPSSII**
 - Inversion time ~1800 ms
 - TI1 of 800 ms
 - Slab thickness 15-20 cm
 - **Ideally 3D readout.**
 - 2D EPI an acceptable alternative.
 - **Resolution:**
 - 3-4 mm in plane.
 - 4-8 mm through plane.
 - **Use background suppression.**

Recommended Implementation of Arterial Spin Labeled Perfusion MRI for Clinical Applications: A consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia

Outline

- Acquisition
- Keep it simple!
 - Perfusion weighted images.
- Quantitative perfusion:
 - Kinetics: A short course in tracer kinetics.
 - Calibration: Measuring arterial blood magnetization.
- Preparing for group analysis.
- Advanced quantification:
 - Distortion Correction
 - Macro vascular contamination
 - Partial Volume Correction
Example (simple)

- **What I have...**
 - ➔ ASL data!

- **What I want...**
 - ➔ A perfusion image (in this subject).

- **What should I do?**
 - ➔ Label-control subtraction
 - ➔ Average

```bash
asl_file --data={ASLdata.nii.gz} --ntis=1 --iaf=tc --diff --out={diffdata.nii.gz}
asl_file --data={ASLdata.nii.gz} --ntis=1 --iaf=tc --diff --mean={diffdata_mean.nii.gz}
```
• Acquisition

• Keep it simple!
 ➡️ Perfusion weighted images.

• Quantitative perfusion:
 ➡️ Kinetics: A short course in tracer kinetics.
 ➡️ Calibration: Measuring arterial blood magnetization.

• Preparing for group analysis.

• Advanced quantification:
 ➡️ Distortion Correction
 ➡️ Macro vascular contamination
 ➡️ Partial Volume Correction
Example

- **What I have...**
 - ASL data
 - (calibration images)

- **What I want...**
 - Perfusion in ml/100g/min

- **What should I do?**
 - Label-control subtraction. ✓
 - Kinetic model inversion. ←
 - Calibration
Introduce tracer

Arterial Input Function

Tissue (voxel)

Residue Function

\[\Delta M(t) = F \cdot \text{AlF}(t) \cdot r(t) \]
Kinetic Model Inversion

Arterial Input Function

Tracer concentration tells us about the delivery of the tracer

Tracer concentration over time
Kinetic Model Inversion

Parameters:
- Arterial Transit time
- Label duration
- T1 decay (in blood)

pcASL

AIF

LABEL

T1 decay

Tissue (voxel)
Residue Function

Tells us what happens to the tracer after it has arrived.

Tracer Remaining

100%

‘time’
Kinetic Model Inversion

‘Well mixed’ T1 decay

- Rapid exchange: single well mixed compartment
- No spins leave the compartment
- Decay with T1

Parameters:
Arterial Transit Time
Label duration
T1 decay (in blood)
\[\Delta M(t) = F \cdot \text{AIF}(t) \ast r(t) \]

Parameters:
- Perfusion - \(F \)
- Arterial Transit Time
- Label duration
- T1 decay (in blood)
Kinetic Model Inversion

Arterial Input Function

Residue Function

Concentration time curve
The ‘simple’ model
- Only one T_1 value (blood)
- Spins never leave tissue

The ‘standard’ model:
- Separate T_1 for blood and tissue ($T_{1b} < T_{1t}$).
- Spins leave voxel at rate determined by perfusion and partition coefficient.

Example

What you need to know about your data:

<table>
<thead>
<tr>
<th>Labeling</th>
<th>pASL (pulsed)</th>
<th>pcASL (continuous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversion time(s)</td>
<td>or</td>
<td>Post-labeling delay(s)</td>
</tr>
<tr>
<td>Bolus duration</td>
<td></td>
<td>Labeling duration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>3D/2D (slice timing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (tissue and blood)</td>
<td></td>
</tr>
<tr>
<td>Arterial Transit Time</td>
<td></td>
</tr>
</tbody>
</table>

What I have...
- ASL data
- (calibration images)

What I want...
- Perfusion in ml/100g/min

What should I do?
- Label-control subtraction. ✓
- Kinetic model inversion. ←
- Calibration.

```
oxford_asl -i {asl_data} -o {output_dir} --iaf={tc} {--casl} --tis={list_of_TIs} --bolus={bolus_duration} --slicedt={time_per_slice} {model/analysis options}
```
Example

- What I have...
 - ASL data
 - (calibration images)

- What I want...
 - Perfusion in ml/100g/min

- What should I do?
 - Label-control subtraction. ✓
 - Kinetic model inversion.
 - Calibration

pcASL with
- labeling duration: 1.8 s
- post-label delay: 1.8 s

2D readout
- 45.2 ms per slice

Assume 'white paper'
- TI : 1.65 s
- ATT : 0 s

Arterial Spin Labelling : M.A. Chappell
Example

pcASL with
- labeling duration: 1.8 s
- post-label delay: 1.8 s
- 2D readout
 - 45.2 ms per slice

Assume
- ‘white paper’
- $T1 = 1.65$ s
- $ATT = 0$ s

#Do label control subtraction

```bash
> asl_file --data={ASLdata.nii.gz} --ntis=1 --iaf=tc --diff --out={asldiffdata.nii.gz} \ 
   --mean={asldiffdata_mean.nii.gz}
```
Example

pcASL with
labeling duration: 1.8 s
post-label delay: 1.8 s

2D readout
45.2 ms per slice

Assume
‘white paper’

T1 : 1.65 s
ATT : 0 s

```bash
# Do label control subtraction
> asl_file --data={ASLdata.nii.gz} --ntis=1 --iaf=tc --diff --out={asldiffdata.nii.gz} \ 
  --mean={asldiffdata_mean.nii.gz}
```
Example

- **What I have...**
 - ASL data
 - (calibration images)

- **What I want...**
 - Perfusion in ml/100g/min

- **What should I do?**
 - Label-control subtraction.
 - Kinetic model inversion.
 - M0 calculation.

pcASL with
- labeling duration: 1.8 s
- post-label delay: 1.8 s
- 2D readout
 - 45.2 ms per slice

Assume
- 'white paper'
 - TI : 1.65 s
 - ATT : 0 s

#Do label control subtraction
asl_file --data={ASLdata.nii.gz} --ntis=1 --iaf=tc --diff --out={asldiffdata.nii.gz} \ --mean={asldiffdata_mean.nii.gz}
Example

pcASL with
labeling duration: 1.8 s
post-label delay: 1.8 s

2D readout
45.2 ms per slice

Assume
‘white paper’
T1 : 1.6 s
ATT : 0 s

Do motion correction

`# Do the analysis using oxford_asl`

```
> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --casl --tis=3.6 --bolus=1.8 /
    --slicedt=0.0452 --wp --mc
```

Arterial Spin Labelling : M.A. Chappell
Example

Perfusion (arbitrary units)

oxas1/native_space/perfusion.nii.gz
• What I have...
 ➞ ASL data
 ➞ (calibration images)

• What I want...
 ➞ Perfusion in ml/100g/min

• What should I do?
 ➞ Tag-control subtraction. ✓
 ➞ Kinetic model inversion. ✓
 ➞ Calibration ←
Arterial Spin Labelling: M.A. Chappell

Calibration

Well mixed

\[T_1 \text{ decay} \]

\[\Delta M(t) = 2 \cdot \alpha \cdot M_{0a} \cdot F \cdot AIF(t) * r(t) \]

Imperfect inversion

Inversion efficiency \(\alpha \)
Cannot measure M_{0a} directly.

indirect via brain ‘tissue’ magnetization.

Calculate M_{0t}.

(M_{0} of ‘tissue’)

M_{0t} to M_{0a}.

Calibration image:

- Proton Density weighted
- ‘Long’ TR: > 5 seconds
- No labelling or background suppression

Account for relative proton densities:

$$M_{0a} = \frac{M_{0t}}{\lambda}$$

Partition co-efficient λ

(relative concentration of water)
Calibration

- Cannot measure M0a directly.
- Indirect via brain ‘tissue’ magnetization.
 - Calculate M0t.
 - (M0 of ‘tissue’)
 - M0t to M0a.
- Practicalities
 - Voxelwise

Perfusion (ml/100g/min) = (Perfusion / M0a) × 6000

Voxelwise Calibration

\[
\text{Voxelwise Calibration} = \frac{\text{Perfusion}}{\text{M0a}} \times 6000
\]

```
foxford_asl ... -c {calibration_image.nii.gz} --tr=[TR]
asl_calib --mode longtr ...
asl_calib --mode satrecov ...
fslmaths {perfusion.nii.gz} -div [M0a] -mul 6000 {perfusion_calib.nii.gz}
```
Calibration

- Cannot measure M0a directly.
- Indirect via brain ‘tissue’ magnetization.
 - Calculate M0t.
 - (M0 of ‘tissue’)
 - M0t to M0a.
- Practicalities
 - Reference Tissue

Perfusion (ml/100g/min) = (Perfusion / M0a) × 6000

Reference Tissue
CSF or WM

```
oxord_asl ... -c {calibration_image.nii.gz} --tr=[TR]
asl_calib --mode longtr ...
asl_calib --mode satrecov ...
fslmaths {perfusion.nii.gz} -div [M0a] -mul 6000 {perfusion_calib.nii.gz}
```
Example

- What I have...
 - ASL data
 - (calibration images)

- What I want...
 - Perfusion in ml/100g/min

- What should I do?
 - Label-control subtraction.
 - Kinetic model inversion.
 - Calibration

pcASL with
- labeling duration: 1.8 s
- post-label delay: 1.8 s

2D readout
- 45.2 ms per slice

Assume
- T1 (blood) : 1.6 s
- T1 (tissue) : 1.3 s
- ATT : 1.3 s
- α : 0.85
Calibration image

No background-suppression
TR: 4.8 s
Do the analysis using oxford_asl

```
oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --casl --tis=3.6 --bolus=1.8 / --slicedt=0.0452 --wp --mc --c {calibration_image.nii.gz} --tr=4.8
```

Calibration image
TR: 4.8 s

Calibration mode
Voxelwise
Example

Perfusion (ml/100g/min)

Correct for ‘edge effects’ (and distortion)

oxasl/native_space/perfusion_calib.nii.gz
Do the analysis using oxford_asl

```bash
# oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --casl --tis=3.6 --bolus=1.8 / --slicedt=0.0452 --wp --mc --c {calibration_image.nii.gz} --tr=4.8 / --fslanat=T1.anat
```

Example

Calibration image

TR: 4.8 s

Calibration mode

- Reference region
 - CSF (ventricles)

Calibration mask

(derived automatically from structural image)
Example

Perfusion (ml/100g/min)

Voxelwise

Reference region

oxas1/native_space/perfusion_calib.nii.gz

Ventricular mask

(automatically generated)
Summary

- The ASL ‘white paper’ quantification formula (pcASL):

\[
\text{CBF} = \frac{6000 \cdot \lambda \cdot (\text{SI}_{\text{control}} - \text{SI}_{\text{label}})}{2 \cdot \alpha \cdot T_{1,\text{blood}} \cdot \text{SI}_{\text{PD}} \cdot (1 - e^{-\frac{\text{PLD}}{T_{1,\text{blood}}}})} e^{\frac{T_{1,\text{blood}}}{\tau}}\]

Subtraction

Kinetic Model Inversion

M0 Calculation (Calibration)

Values:
- \(T_{1,\text{blood}} = 1650 \text{ ms (3T)} \)
- \(\alpha = 0.85 \)
- \(\lambda = 0.9 \text{ ml/g} \)

Assumptions:
- Voxelwise calibration (\(M_{0t} = \text{SI}_{\text{PD}} \))
- \(T_{1,\text{tissue}} = T_{1,\text{blood}} \)
- ATT = 0

Recommended Implementation of Arterial Spin Labeled Perfusion MRI for Clinical Applications: A consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia

EXAMPLE

- **What I have...**
 - ASL data - multi-PLD
 - (calibration images)

- **What I want...**
 - Perfusion in ml/100g/min

- **What should I do?**
 - Label-control subtraction.
 - Kinetic model inversion.
 - Calibration

pcASL with

- labeling duration: 1.4 s
- post-label delays: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

TI: 1.65, 1.9, 2.15, 2.4, 2.65, 2.9

Label control subtraction for each PLD individually

```bash
> asl_file --data={ASLdata.nii.gz} --ntis=6 --iaf=tc --ibf=rpt --diff --split \ 
  --mean={asldiffdata_mean_at_each_PLD.nii.gz}
```
Kinetic Model Inversion

`'Well mixed'`

![Diagram](image)

Parameters:
- Perfusion - F
- Arterial Transit Time
- Label duration
- T_1 decay (in blood)
- T_1 decay (in tissue)

\[
\Delta M(t) = F \cdot AIF(t) \ast r(t)
\]
Kinetic Model Inversion

Parameters:
- Perfusion - \(F \)
- Arterial Transit Time
- Label duration
- \(T_{1\text{tissue}} \)
- \(T_{1\text{blood}} \)

Model

Data

Single-TI/PLD
- Analytic solution
- Bayesian inference (BASIL)

Multi-TI/PLD
- Non-linear fitting (least squares)

Chappell et al., IEEE TSP 57(1), 2009.
Kinetic Model Inversion

- Perfusion
 - Want to know this - variable

- Arterial Transit Time
 - Want to correct for this - variable

- Label duration
 - Set by sequence - fixed
 - but limited to a sensible range
 - (might not be that well fixed, pASL?)

- T_1 tissue
 - 1.3 s at 3T - fixed

- T_1 blood
 - Doesn't T_1 vary a bit?
 - 1.65 at 3T - fixed
Arterial Spin Labelling: M.A. Chappell

Kinetic Model Inversion

Priors:

- Perfusion
- Bolus arrival time
- Bolus duration
- T1

Spatial prior:

Prior distribution for perfusion in voxel defined over its neighbours

σ - spatial scale of prior (determined from the data)
EXAMPLE

• What I have...
 ➔ ASL data - multi-TI/PLD
 ➔ (calibration images)

• What I want...
 ➔ Perfusion in ml/100g/min

• What should I do?
 ➔ Label-control subtraction.
 ➔ Kinetic model inversion.
 ➔ Calibration.

pcASL with
 labeling duration: 1.4 s
 post-label delays: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

TI: 1.65 1.9 2.15 2.4 2.65 2.9

Label control subtraction for each PLD individually
> asl_file --data={ASLdata.nii.gz} --ntis=6 --iaf=tc --ibf=rpt --diff --split \
 --mean={asldiffdata_mean_at_each_PLD.nii.gz}
Example

pcASL with
labeling duration: 1.4 s
post-label delays: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --ibf=rpt --casl --tis=1.65,1.9,2.15,2.4,2.65,2.9 --bolus=1.4 --slicedt=0.0452 --fixbolus --artoff --mc --c {calibration_image.nii.gz} --tr=4.8
Example

- **Data:**
 - pcASL
 - Single-PLD
 - label duration: 1.8 s
 - post-label delay: 1.8 s
 - Assume ATT of 1.3 s
 - Multi-PLD
 - label duration: 1.4 s
 - PLDs: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

oxasl/native_space/perfusion_calib.nii.gz
oxasl/native_space/arrival.nii.gz
Single- vs. Multi-PLD

- Which is better in a fixed scan duration?

Single-PLD

\[\Delta M(t) \]

\[\times 6 \]

Multi-PLD

\[\Delta M(t) \]

Woods et al. MRM 2018 in press
Outline

• Acquisition

• Keep it simple!
 ➡ Perfusion weighted images.

• Quantitative perfusion:
 ➡ Kinetics: A short course in tracer kinetics.
 ➡ Calibration: Measuring arterial blood magnetization.

• Preparing for group analysis.

• Advanced quantification:
 ➡ Distortion Correction
 ➡ Macro vascular contamination
 ➡ Partial Volume Correction
Preparing for Group Analysis

• Group analysis and quantitative comparisons between individuals requires consistent representation

• **Consistent geometry:**
 ➡ ‘Spatial’ normalization (registration)
 ➡ Transform perfusion map to a common space, e.g. MNI152

• **Consistent intensity:**
 ➡ Quantitative maps - perfusion in ml/100g/min.
 ➡ Intensity normalization to a reference.
Preparing for Group Analysis

• Registration to ‘standard’ space
 ➔ ASL → Structural
 linear - 6 DOF
 ➔ Structural → Standard
 linear - 12 DOF
 non-linear

oxford_asl ... --s {structural_image.nii.gz}

See also: asl_reg, flirt, fnirt
Run fsl_anat on structural image

BASIL will then do registration and transformation to:
structural space
standard space

> fsl_anat {T1.nii.gz}
> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --casl --tis=3.6 --bolus=1.8 /
--slicedt=0.0452 --wp --mc -c {calibration_image.nii.gz} --tr=4.8 /
--fslanat=T1.anat
Preparation for Group Analysis

- **Quantitative maps**
 - Requires estimate of M0a - ‘calibration’ data.
 - Pros:
 - An absolute scale - can potentially relate to physiology
 - Ought to be able to set consistent thresholds
 - e.g. perfusion < 20 ml/100g/min is ischaemia
 - Cons:
 - Requires calibration information.
 - Global perfusion appears to be quite variable between individuals.

- **Intensity normalization:**
 - Requires a ‘reference’.
 - e.g. a brain structure: thalamus
 - e.g. a ‘global’ value: mean in GM or WM
 - Pros:
 - No need for calibration.
 - Removes inter subject variability in ‘global’ perfusion.
 - Cons:
 - Relies on a consistent reference.
Preparing for Group Analysis

- Intensity normalization:
 ➡ Pick a ROI:
 Manually
 From atlas
 From a segmentation
 ➡ Calculate mean within ROI.
 ➡ Scale perfusion maps.

- Transform ROI into perfusion space or vice versa?
 ➡ ROI in high-res -> perfusion space
 Interpolation on ROI mask: sharp boundaries in high-res become ‘soft’ requiring thresholding - possible bias.
 ➡ Perfusion image -> high-res
 Interpolation occurs on perfusion values, ROI untouched.

- Exception is ‘soft’ segmentations
 e.g. GM/WM on a structural image.
 ➡ Transform ‘soft’ segmentations first and THEN threshold to create ROI.
Preparing for Group Analysis

GM PVE

Transform

Threshold at 0.7

High res GM mask

Transform

Threshold at 0.7

Arterial Spin Labelling: M.A. Chappell
Preparing for Group Analysis

- ROI
 - GM / WM (?)
 - partial volume issues
 - Structures
- Voxelwise

- Designs
 - Group mean
 - Group differences/paired differences

Absolute perfusion:
A direct physiological measurement
- e.g. Asllani et al., JCBFM, 28, 2008.
A consistent baseline (c.f BOLD)
- e.g. Wang et. al, MRM, 49, 2003.
Inter subject and inter session variability
- e.g Gevers et al., JCBFM, 31, 2011.
- Petersen et al., NeuroImage, 49(1), 2011.

Arrival time (multi-TI/PLD):
Potential confound
An extra quantitative measurement
- e.g. Bokkers et al., AJNR, 29(9), 2008.
- MacIntosh et al, AJNR, 33(10), 2012.

Feat (higher-level analysis)
Randomise
EXAMPLE

• What I have...
 ➔ ASL perfusion in multiple sessions/subjects
 ➔ Structural images

• What I want...
 ➔ Perfusion change/difference (in ml/100g/min)

• What should I do?
 ➔ Registration.
 ➔ GLM

pcASL with
labeling duration: 1.4 s
post-label delays: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --ibf=rpt --casl --tis=1.65,1.9,2.15,2.4,2.65,2.9 --bolus=1.4 --slicedt=0.0452 --fixbolus --artoff --mc --fslanat=T1.anat --c {calibration_image.nii.gz} --tr=4.8
- **Data:**
 - pcASL, Multi-PLD
 - label duration: 1.4 s
 - PLDs: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s
 - 8 individuals
 - task - finger tapping and visual stimulation

- **Paired t-test**

```
> flameo --cope=perfusion_study.nii.gz \
   --mask=${FSLDIR}/data/standard/MNI152_T1_2mm_brain_mask.nii.gz \
   --dm=design.mat --tc=design.con --cs=design.grp --runmode=ols --ld=flameout
```
Data:
- pcASL, Multi-PLD
 - label duration: 1.4 s
 - PLDs: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s
- 8 individuals
 - task - finger tapping and visual stimulation

Paired t-test

Perfusion change (effect size)
Example

- Data:
 pcASL, Multi-PLD
 label duration: 1.4 s
 PLDs: 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

- Paradigm
 Monitoring response to painful stimulus

Segerdahl et al. Nat Neuroscience 2015
Outline

- Acquisition

- Keep it simple!
 - Perfusion weighted images.

- Quantitative perfusion:
 - Kinetics: A short course in tracer kinetics.
 - Calibration: Measuring arterial blood magnetization.

- Preparing for group analysis.

- Advanced quantification:
 - Distortion Correction
 - Macro vascular contamination
 - Partial Volume Correction
Advanced: Distortion Correction

- EPI readout will include distortion in regions of field inhomogeneity
 - cf BOLD fMRI
- Need to correct for:
 - geometric distortion
 - AND intensity
- Need:
 - field map OR
 - phase encode reversed image

```bash
oxford_asl ... --cblip=ASL_calibration_phase_reversed pedir=[direction] \ --echospacing=[value]
oxford_asl ... --fmap=fieldmap_image --fmapmag=fieldmap_magnitude_image \ --fmapmagbrain=brain_extracted_fmapmag --pedir=[direction] --echospacing=[value]
```
pcASL with
labeling duration: 1.8 s
post-label delay: 1.8 s

2D readout
45.2 ms per slice

Calibration images
TR: 4.8 s

(1) AP encoding
(2) PA encoding
echo spacing (dwell time): 0.06 ms

Do the analysis using oxford_asl

```
> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --casl --tis=3.6 --bolus=1.8 /
--slicedt=0.0452 --wp --mc -c {calibration_image.nii.gz} --tr=4.8 /
--cblip={calibration_PA.nii.gz} --pedir=y --echospacing=0.06
```
Example

Perfusion (ml/100g/min)

oxas1/native_space/perfusion_calib.nii.gz
Advanced: Macro Vascular Contamination

- Early TIs may contain label still within larger arteries.
 ➞ perfusion overestimation

- Use long TI/PLD(s)
- Use flow suppressing gradients
- Include in model - multi-TI data
 ➞ provides estimate of arterial blood volume

oxford_asl: MV component included by default, use --artoff to turn off

Ye et al., MRM 37(2), 1997.
Chappell et al., MRM 63(5), 2010.

Arterial Spin Labelling: M.A. Chappell
An extended model for ASL:

$$\Delta M(t) = CBF \Delta M_{\text{tiss}}(t) + aBV \Delta M_{\text{IV}}(t)$$

ARD prior: $\sim N(0, \nu)$

- ν determines the relevance of the prior.
- ν is determined from the data.

$\nu \rightarrow 0$

Restrictive prior: parameter forced to prior mean

$\nu \rightarrow \infty$

Liberal prior: parameter free to be estimated from data
EXAMPLE

- **What I have...**
 - ASL data - multi-TI/PLD
 - (calibration images)

- **What I want...**
 - Perfusion in ml/100g/min
 - Arterial blood volume in ml/ml.

- **What should I do?**
 - Tag-control subtraction.
 - Kinetic model inversion.
 - M0 calculation.

```
> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --ibf=rpt --casl --tis=1.65,1.9,2.15,2.4,2.65,2.9 --bolus=1.4 --slicedt=0.0452 --fixbolus --artoff --mc -c {calibration_image.nii.gz} --tr=4.8
```
Example

Perfusion ml/100g/min Arterial cerebral blood volume % (ml/ml * 100)

middle slice lower slice ~ Circle of Willis

oxasl/native_space/perfusion_calib.nii.gz
oxasl/native_space/aCBV_calib.nii.gz
Partial voluming of grey and white matter inevitable.

Leads to GM perfusion underestimation

- WM perfusion < GM
- WM blood arrival > GM

Correction

- PV estimates from segmentation of structural image.
 Note: partial volume estimates NOT a hard segmentation or probabilities.
- Make separate GM and WM perfusion estimates in every voxel.
 An under determined problem.
• Does it matter that much?
 ➔ Resolution of ASL ~ 3 x 3 x 5 mm
 ➔ Cortical thickness ~ 2 - 4 mm

• Unlikely to have many pure GM or WM voxels in the cortex

Advanced: Partial Volume Correction

Structural resolution

Partial Volume Estimate
Threshold at 90%

ASL resolution

Partial Volume Estimate
Threshold at 90%
Advanced: Partial Volume Correction

- Does it matter that much?
 - Resolution of ASL $\sim 3 \times 3 \times 5$ mm
 - Cortical thickness $\sim 2 - 4$ mm

- What is this?

\[60 \times PVE_{GM} + 10 \times PVE_{WM} \]
Estimated perfusion from ASL
What do we mean when we report GM or WM perfusion?

- GM
- WM
- Whole brain

Perfusion ml/100g/min

Threshold on % PVE

GM mask threshold at 90%
Partial volume correction exploiting kinetic data:

- CBF: GM > WM
- Bolus arrival: WM > GM
Advanced: Partial Volume Correction

- Multi-component model:

\[
\Delta M(t) = PV_{GM}\Delta M_{GM}(t) + PV_{WM}\Delta M_{WM}(t) + PV_{CSF}\Delta M_{CSF}(t) + aBV \Delta M_{MV}(t)
\]

Grey matter

White matter

CSF

Macro vasc.

- Spatial priors on CBF for GM and WM
EXAMPLE

- **What I have...**
 - ASL data - multi-TI/PLD
 - (calibration images)

- **What I want...**
 - Grey matter perfusion in ml/100g/min

- **What should I do?**
 - Tag-control subtraction.
 - Kinetic model inversion.
 - M0 calculation.
 - Partial volume correction

pcASL with

- **labeling duration:** 1.4 s
- **post-label delays:** 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 s

Segmented **structural image**, e.g. fsl_anat output

```bash
> oxford_asl -i {ASLdata.nii.gz} -o {oxasl} --iaf=tc --ibf=rpt --casl --tis=1.65,1.9,2.15,2.4,2.65,2.9 --bolus=1.4 --slicedt=0.0452 --fixbolus --mc --pvcorr --fslanat=T1.anat --c {calibration_image.nii.gz} --tr=4.8
```
EXAMPLE

Perfusion (uncorrected) ml/100g/min
Grey matter perfusion ml/100g/min
White matter perfusion ml/100g/min

oxasl/native_space/perfusion_calib.nii.gz
oxasl/native_space/pvcorr/perfusion_calib_masked.nii.gz
oxasl/native_space/pvcorr/perfusion_wm_calib_masked.nii.gz
FSL: The FMRIB Software Library

- BASIL: www.fmrib.ox.ac.uk/fsl/basil

 User guide & tutorials for FSL v5.0+

 Follow the link for the 'pre-release' and updated user guide/tutorials

Oxford Neuroimaging Primers:

Introduction to Perfusion Quantification using Arterial Spin Labelling

- Cover material in this lecture and more.
- http://www.neuroimagingprimers.org

 Examples using BASIL (extended from the FSL course)
Acknowledgements

- QuBlc, Engineering Science, Oxford
 - Martin Craig
 - Moss Zhao
 - Flora Kennedy McConnell
 - Tom Kirk
- WIN/FMRIB, Oxford
 - Peter Jezzard
 - Tom Okell
 - Joe Woods
 - Michael Kelly
 - James Meakin
 - Matthew Webster
 - Mark Jenkinson

- Brad MacIntosh (Univ. Toronto)
- Manus Donahue (Vanderbilt)
- Xavier Golay (UCL, London)
- Esben Petersen (Utrecht)
- Marco Castellaro (Padova)
- Ilaria Boscolo Galazzo (Verona)
Task-Based ASL

Why use ASL for a functional experiment?

- A direct measure of perfusion changes - physiological response.
- (Potentially) fully quantitative - possible to calculate absolute perfusion.
- Good for low frequency designs.

What are the challenges?

- SNR
- Temporal sampling - TR and the need for tag and control scans.
- Time series data will contain both ASL (tag-control difference) and BOLD effects (depends upon the TE used).
Task-Based ASL

- What I have...
 - ASL data during a functional task.

- What I want...
 - Activations

- What should I do?
 - Tag-control subtraction
 - GLM
• Two options in FEAT
 ➡ Do subtraction before GLM
 ➡ (FILM prewhitening OFF)
 ➡ ONLY considers the perfusion contribution, subtraction removes BOLD signal.

```
asl_file --data={ASLdata.nii.gz} --ntis=1 --iaf=tc --diff --out={diffdata.nii.gz}
perfusion_subtract {ASLdata.nii.gz} {diffdata.nii.gz}
```
Task-Based ASL

- **Two options in FEAT**
 - **Full model**
 - Includes perfusion and BOLD contributions
 - **EV1** - Tag vs. Control
 - $-1 \ 1 \ -1 \ 1 \ -1 \ 1 \ -1 \ 1$
 - **EV2** - BOLD
 - **EV3** - Interaction

```
<table>
<thead>
<tr>
<th></th>
<th>c-t</th>
<th>BOLD</th>
<th>c-act</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>perfusion activation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>-perfusion activation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>BOLD</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>04</td>
<td>-BOLD</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>05</td>
<td>control-tag baseline</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>06</td>
<td>control-tag -baseline</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
QUASAR

- multi-TI pASL acquisition.
- Mixture of flow suppression on and off.
- Saturation recovery control images

Analysis

- model-based - include MV component
- model-free - numerical deconvolution (c.f. DSC)

```bash
quasil -i {QUASAR_image} -o {out_dir}
quasil -i {QUASAR_image} -o {out_dir} --mfree
```

Petersen et al., MRM 55(2),2006.
Chappell et al., MRM e-print, 2013.