
Recall

- GLM is flexible
 - One Sample T Test
 - ANOVA
 - Two sample T Test
 - Paired T test
- What do the models look like?

 $H_0: c\beta = 0 \;\; {
m where} \;\; c = [1 \;\; -1]$

Understanding a model

- If you're unsure about a model or the contrasts
 - Plug in numbers
 - Look at graphs (fMRI data)
- Always ask yourself if your model is doing what you want it to

For example...

- For the 2 sample T test
 - -Set $\beta_1 = 3$ $\beta_2 = 5$
 - Then G1=8 and G2=3
 - So β_1 is the mean of group 2 and β_2 is the difference between the groups
 - What are the contrasts to test
 - Mean of G2 $c = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 - Mean of G1
 - G1-G2

 β_2

 $X\beta =$

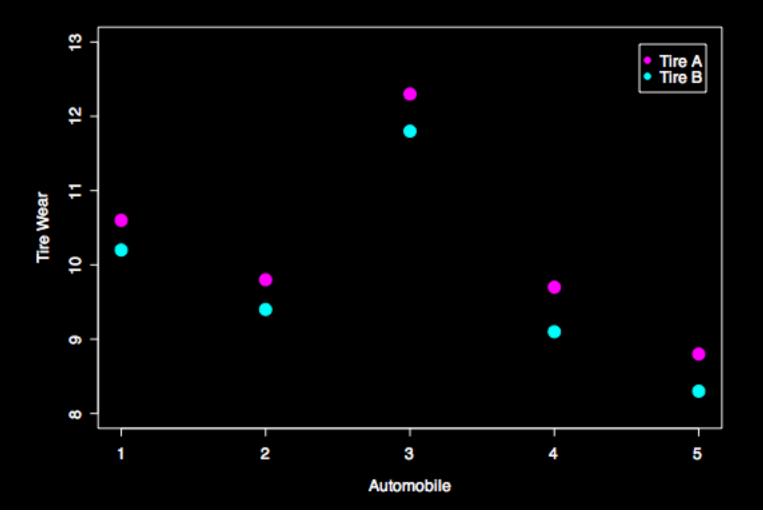
For example...

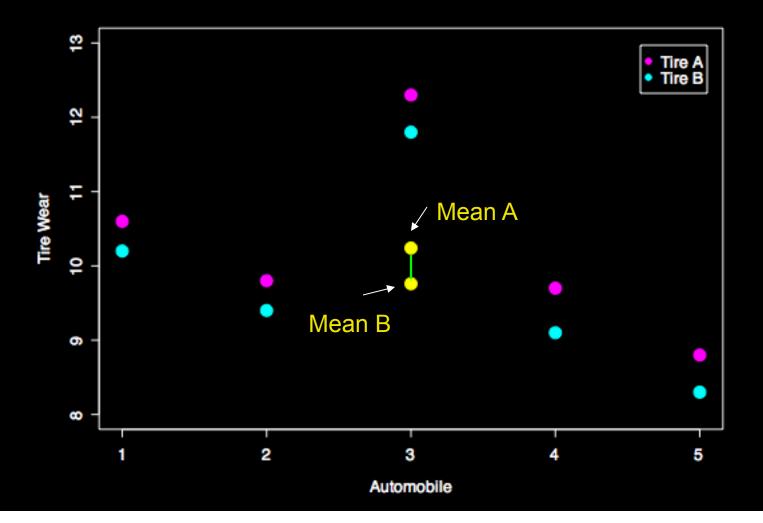
- For the 2 sample T test
 - -Set $\beta_1 = 3$ $\beta_2 = 5$
 - Then G1=8 and G2=3
 - So β_1 is the mean of group 2 and β_2 is the difference between the groups
 - What are the contrasts to test
 - Mean of G2 $c = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 - Mean of G1 $c = [1 \ 1]$
 - G1-G2

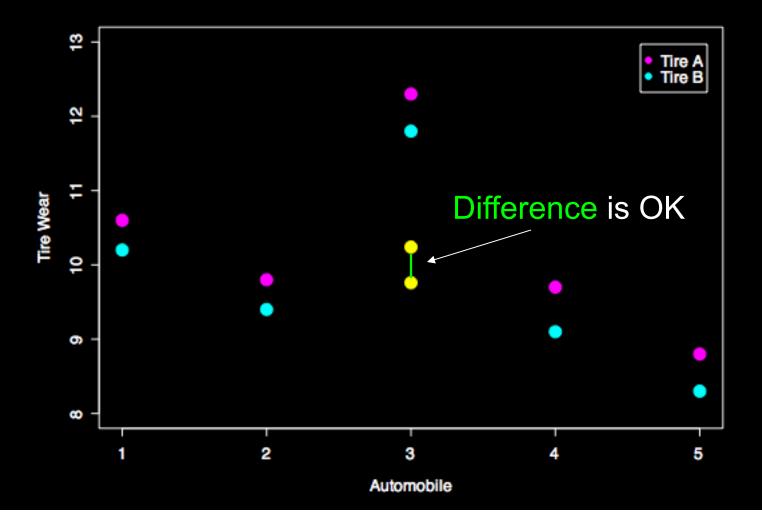
$$\left(egin{array}{cccc} 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 1 \ 1 & 0 \ 1 & 0 \ 1 & 0 \ 1 & 0 \ 1 & 0 \ 1 & 0 \ 1 & 0 \ \end{array}
ight) \left(egin{array}{c} eta_1 \ eta_2 \ \end{pmatrix}$$

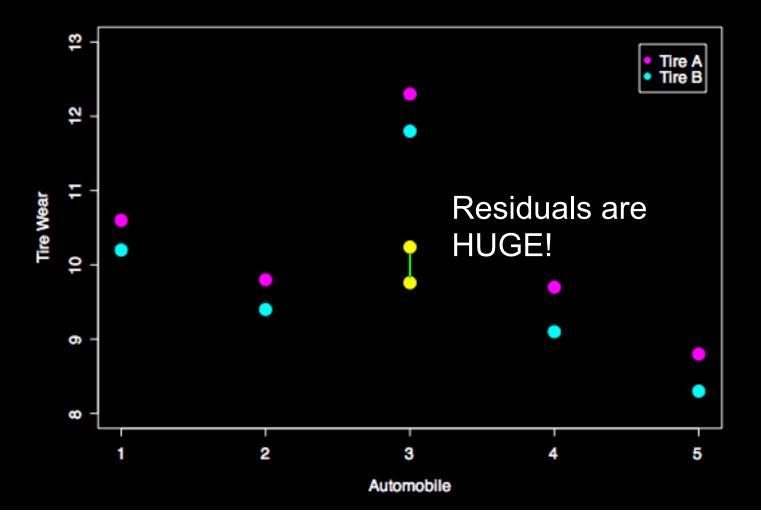
 $X\beta =$

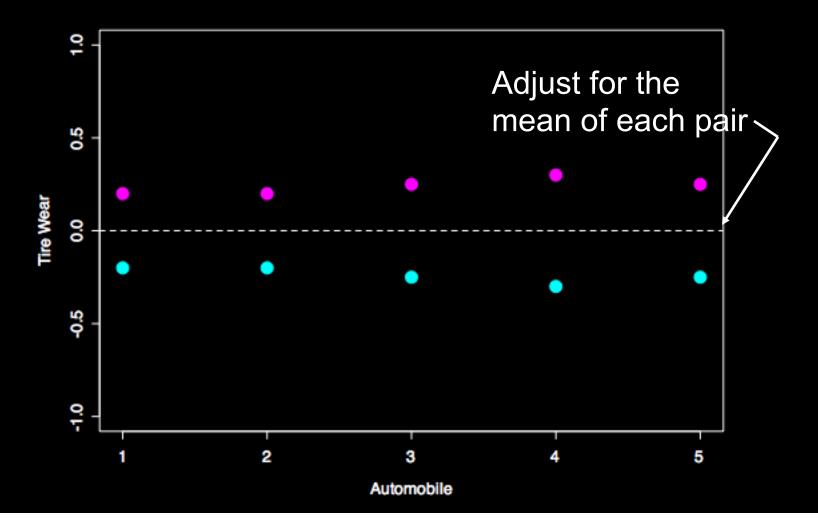
For example...

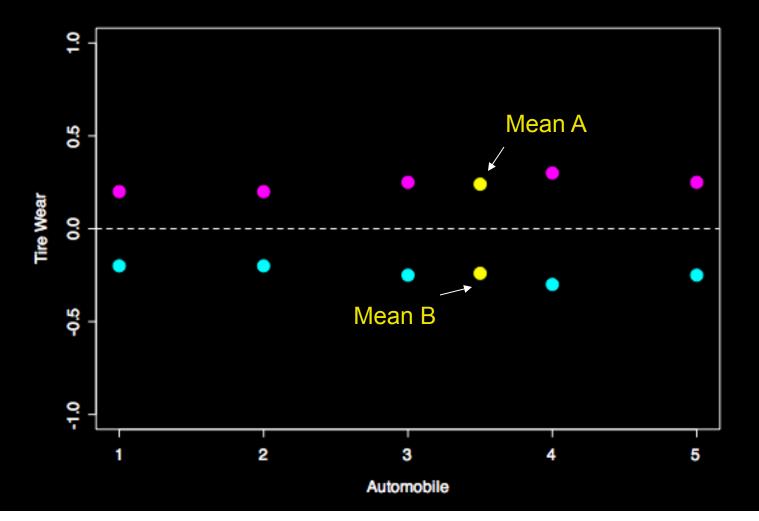

- For the 2 sample T test
 - -Set $\beta_1 = 3$ $\beta_2 = 5$
 - Then G1=8 and G2=3
 - So β_1 is the mean of group 2 and β_2 is the difference between the groups
 - What are the contrasts to test
 - Mean of G2 $c = \begin{bmatrix} 1 & 0 \end{bmatrix}$
 - Mean of G1 $c = [1 \ 1]$
 - G1-G2 $c = [0 \ 1]$

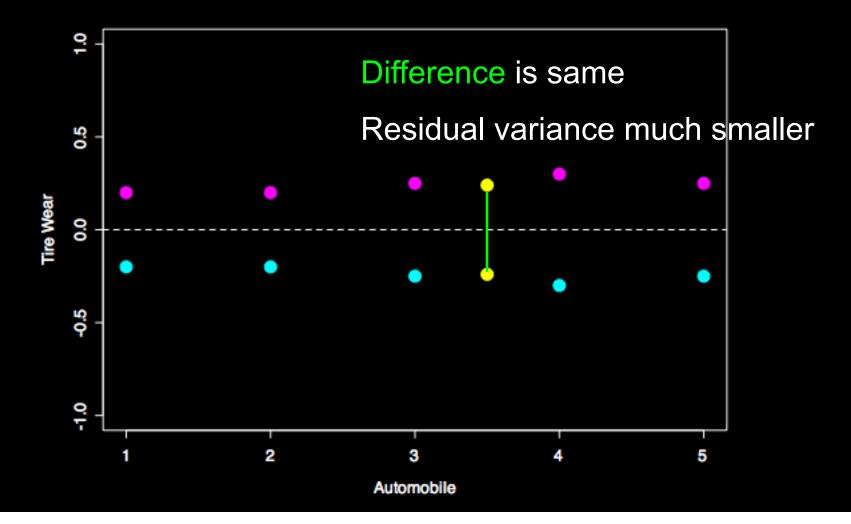

 $X\beta =$

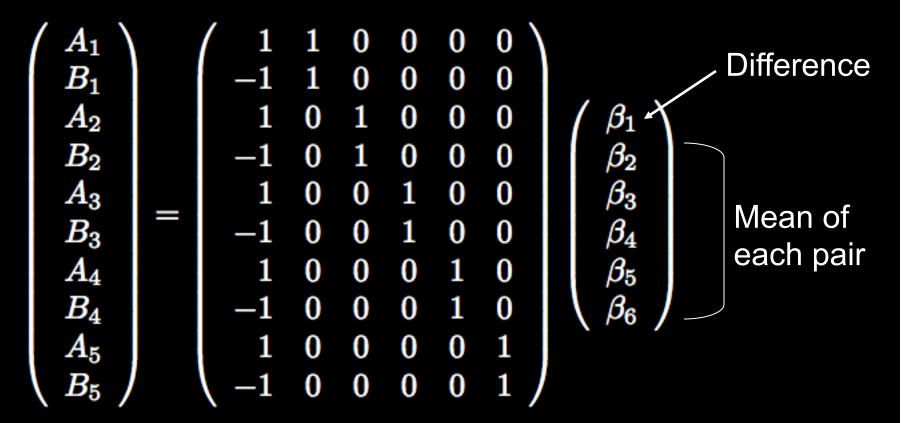

- A common mistake is to use a 2-sample t test instead of a paired test
- Tire example

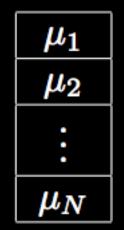

Automobile	Tire A	Tire B
1	10.6	10.2
2	9.8	9.4
3	12.3	11.8
4	9.7	9.1
5	8.8	8.3

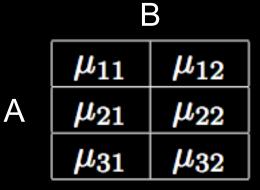

- 2-sample T test p=0.58
- Paired T test p<0.001

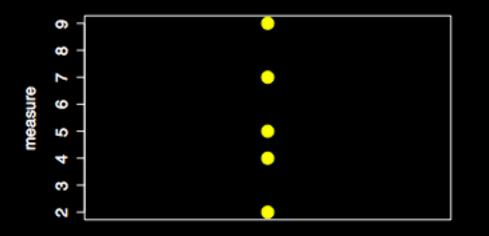


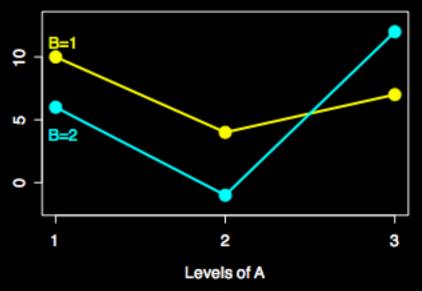


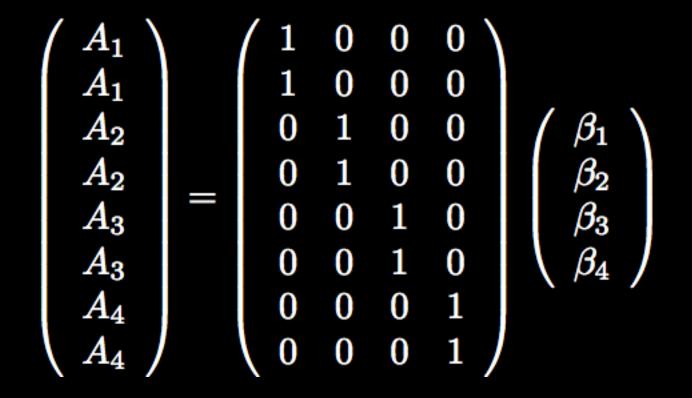



Paired T Test GLM

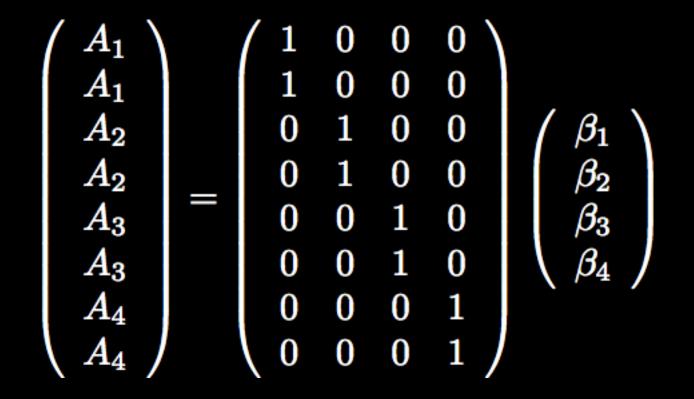

 H_0 : Paired difference = 0 $H_0: c\beta = 0, \ c = [1 \ 0 \ 0 \ 0 \ 0]$


ANOVA

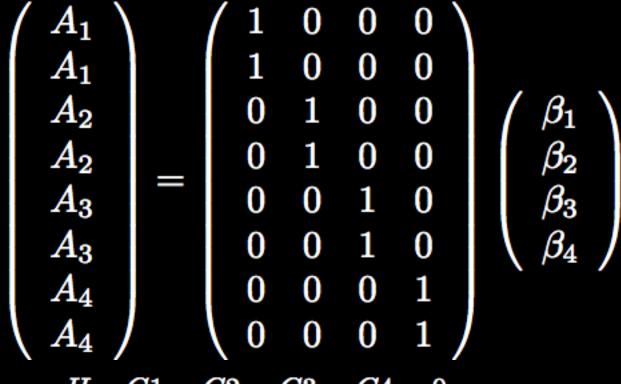

1-way ANOVA

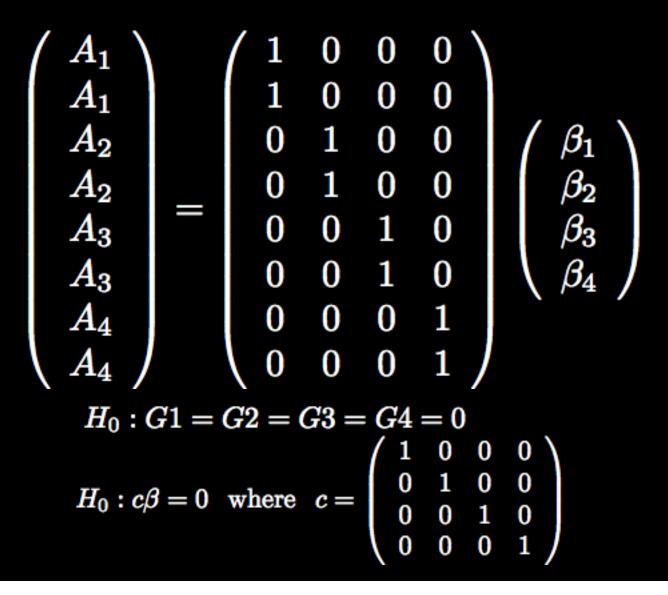


Modeling ANOVA with GLM


- Cell means model
 - 1-way ANOVA $Y_{in} = \mu_i + \epsilon_{in}$
 - 2-way ANOVA $Y_{ijn} = \mu_{ij} + \epsilon_{ijn}$
 - EVs are easy, but contrasts are trickier

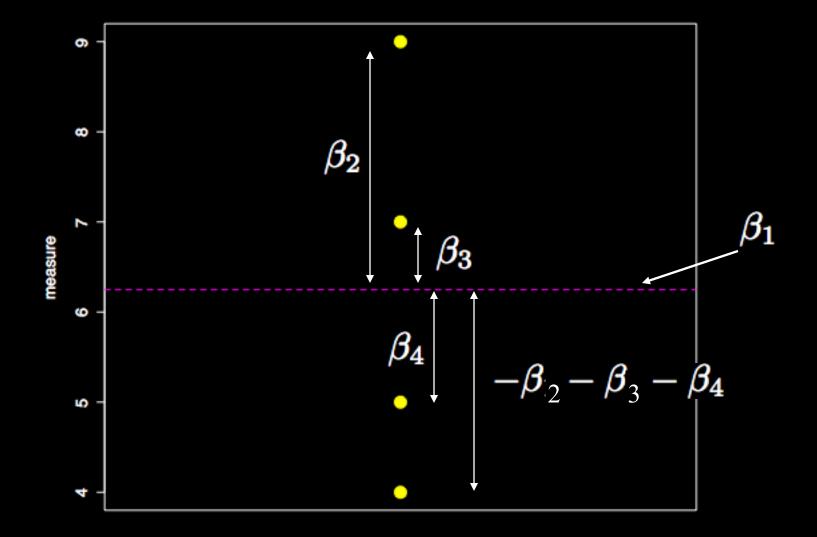
Modeling ANOVA with GLM

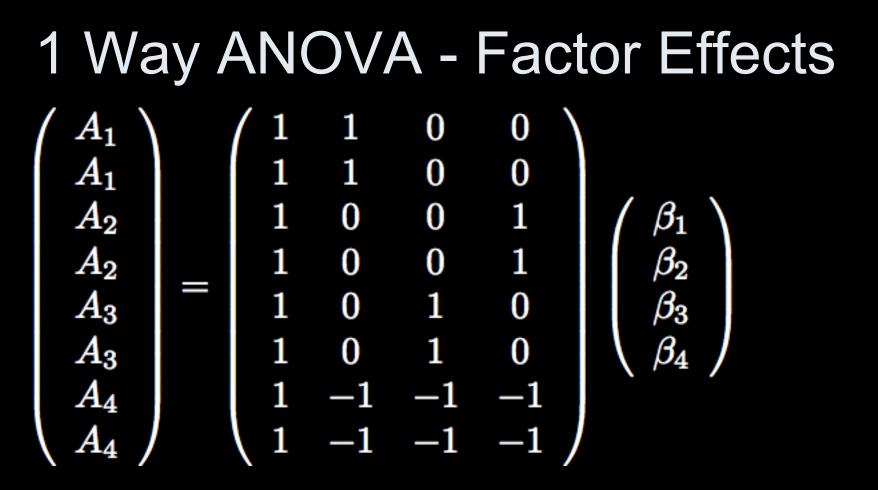

- Cell means model
 - 1-way ANOVA $Y_{in} = \mu_i + \epsilon_{in}$
 - 2-way ANOVA $Y_{ijn} = \mu_{ij} + \epsilon_{ijn}$
 - EVs are easy, but contrasts are trickier
- Factor effects
 - -1-way $Y_{in} = \mu_{\cdot} + \alpha_i + \epsilon_{in}$
 - -2-way $Y_{ijn} = \mu_{\cdot} + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijn}$
 - EVs take more thought, but contrasts are easier
- ANOVA = F tests!


 $H_0: G2 - G3 = 0$

 $H_0: G2 - G3 = 0$ $H_0: ceta = 0$ where $c = \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}$

 $H_0: G1 = G2 = G3 = G4 = 0$


1 Way ANOVA - Factor Effects


In general

- # of regressors for a factor = # levels-1
- Factor with 4 levels
 - $X_i = -1$ if case from level i • $X_i = -1$ if case from level 4
 - 0 otherwise

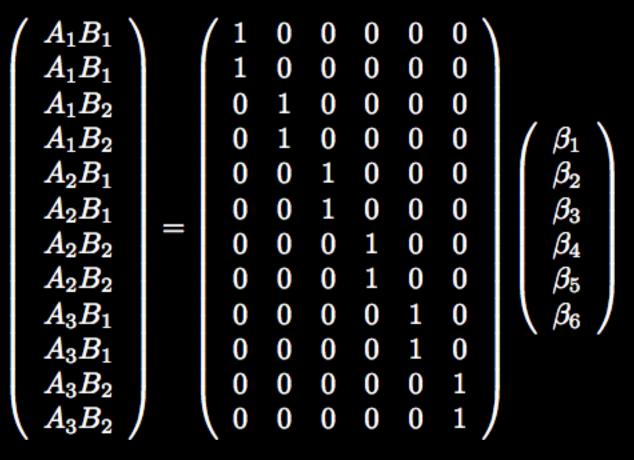
1 Way ANOVA - Factor Effects $egin{array}{c} A_1 \ A_1 \ A_2 \ A_2 \ A_2 \ A_3 \ A_3 \ A_4 \ A_4 \ A_4 \end{array}$ mean β_1 $egin{smallmatrix} eta_2\ eta_3 \end{split}$ β_4 $G1 = \beta_1 + \beta_2$ $G2 = \beta_1 + \beta_3$ $G3 = \beta_1 + \beta_4$ $G4 = \beta_1 - \beta_2 - \beta_3 - \beta_4$

1 Way ANOVA - Factor Effects

 H_0 : mean of G1 = 0

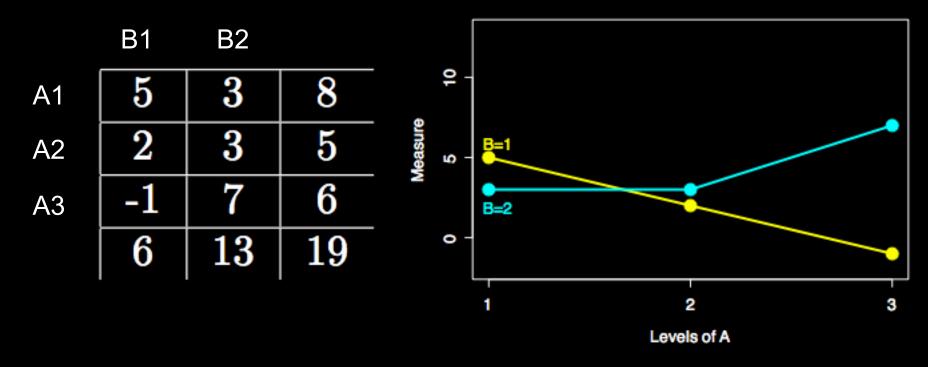
1 Way ANOVA - Factor Effects 1 0 0 $egin{array}{c} A_1 & \ A_1 & \ A_2 & \ A_2 & \ A_2 & \ A_3 & \ A_3 & \ A_4 & \ A_4$ $\mathbf{1}$ 1 1 0 0 1 0 0 1 $egin{array}{c} eta_1\ eta_2\ eta_3 \end{array}$ 1 0 1 0 β_4 $1 \quad -1 \quad -1 \quad -1$ -1 -11 -1

 H_0 : mean of G1 = 0

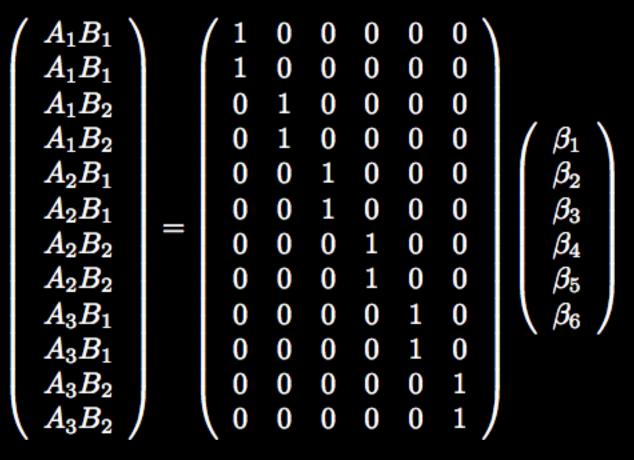

 $H_0: ceta = 0 \;\; ext{where} \;\; c = [1 \;\; 1 \;\; 0 \;\; 0]$

1 Way ANOVA - Factor Effects 0 0 $egin{array}{c} A_1 \ A_1 \ A_2 \ A_2 \ A_2 \ A_3 \end{array}$ 1 $\mathbf{1}$ 1 1 0 0 1 $egin{array}{c} eta_1\ eta_2\ eta_3 \end{array}$ 0 0 1 1 1 0 0 1 $0 \quad 1$ 0 $egin{array}{c} A_3\ A_4\ A_4\ A_4 \end{array}$ $\mathbf{1}$ β_4 0 1 0 $\mathbf{1}$ -1-1-1-1-11 -1

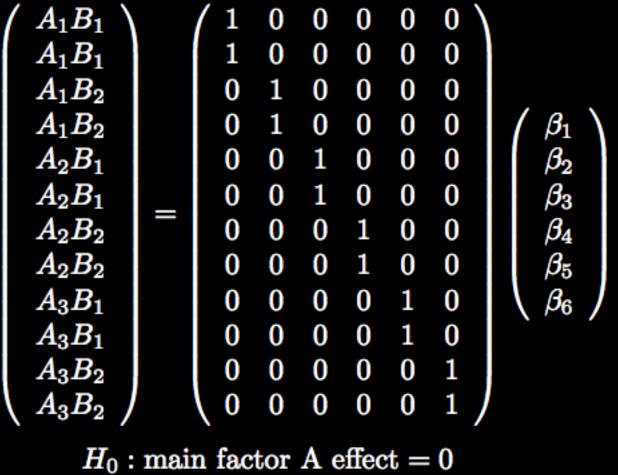
 $H_0: G1 - G4 = 0$

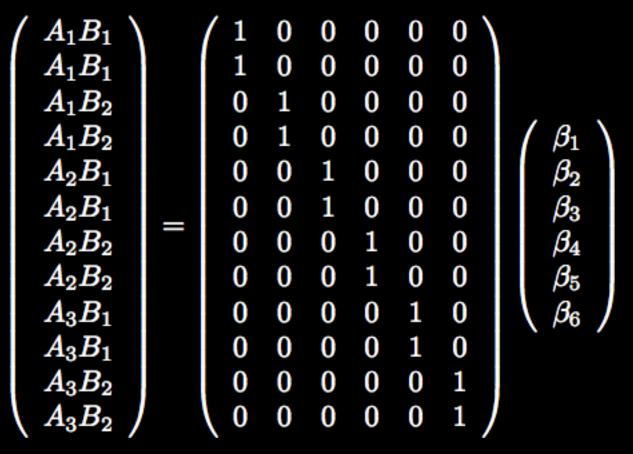

1 Way ANOVA - Factor Effects $1 \quad 0 \quad 0$ $egin{array}{c} A_1 & \ A_1 & \ A_2 & \ A_2 & \ A_2 & \ A_3 & \ A_3 & \ A_4 & \ A_4$ 1 $= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & -1 & -1 & -1 \\ 1 & -1 & -1 & -1 \end{bmatrix}$ $egin{array}{c} eta_1 \ eta_2 \ eta_3 \end{array}$ β_4 1 - 1 - 1 - 1 $H_0: G1 - G4 = 0$

 $c = (1 \ 1 \ 0 \ 0) - (1 \ -1 \ -1 \ -1) = (0 \ 2 \ 1 \ 1)$

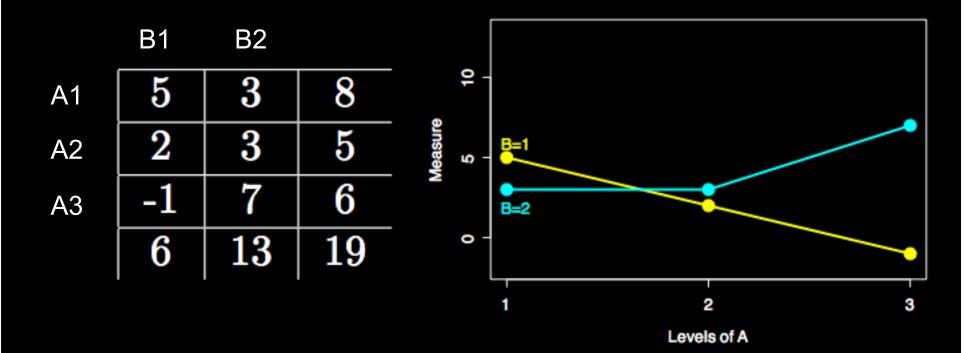


 H_0 : main factor A effect = 0


 H_0 : main factor A effect = 0

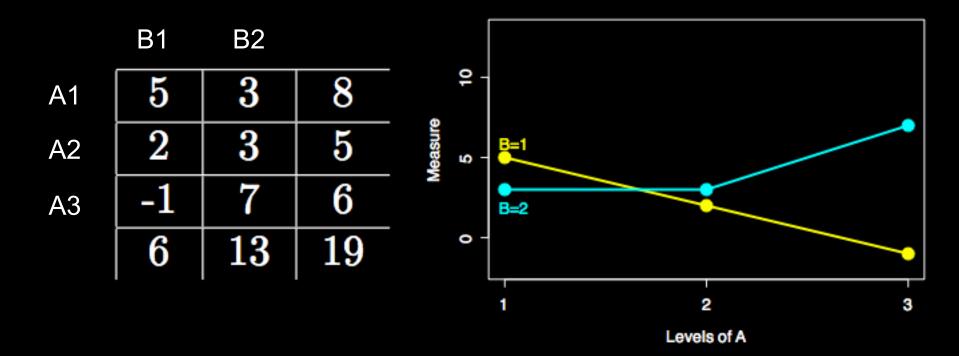

No effect means the marginals would be the same Null: A1=A2=A3 equivalently A1-A3=0 and A2-A3=0

 H_0 : main factor A effect = 0

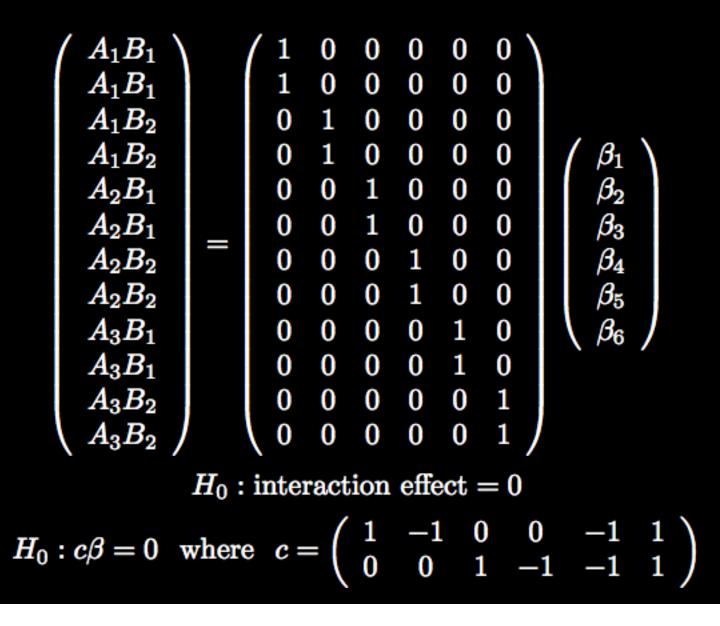

 $H_0: ceta=0 \hspace{0.2cm} ext{where} \hspace{0.2cm} c=\left(egin{array}{cccccc} 1 & 1 & 0 & 0 & -1 & -1 \ 0 & 0 & 1 & 1 & -1 & -1 \end{array}
ight)$

 H_0 : interaction effect = 0

2 Way ANOVA (3x2)


 H_0 : interaction effect = 0

No effect means the lines would be parallel


2 Way ANOVA (3x2)

 H_0 : interaction effect = 0

No effect means the lines would be parallel A1B1-A1B2=A2B1-A2B2=A3B1-A3B2

2 Way ANOVA (3x2)

 Recall for factor effects, a factor with n levels has regressors set up like

 $egin{array}{cccc} 1 & {
m if case from level i} \ X_i = & -1 & {
m if case from level n} \ & 0 & {
m otherwise} \end{array}$

- A has 3 levels, so 2 regressors
- B has 2 levels, so 1 regressor

$\left(egin{array}{c} A_1B_1 \\ A_1B_1 \\ A_1B_2 \\ A_1B_2 \\ A_2B_1 \\ A_2B_1 \\ A_2B_1 \\ A_2B_2 \\ A_2B_2 \\ A_3B_1 \\ A_3B_1 \\ A_3B_1 \\ A_3B_2 \\ A_3B_2 \end{array} ight)$	$\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}$	$ \begin{array}{c} 1\\1\\1\\0\\0\\0\\-1\\-1\\-1\\-1\\\end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ $	$ \begin{array}{c} 1\\ -1\\ -1\\ 1\\ -1\\ -1\\ -1\\ 1\\ -1\\ -1\\ -1$	$ \begin{array}{c} 1\\ -1\\ -1\\ 0\\ 0\\ 0\\ -1\\ -1\\ 1\\ 1\\ \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $	$\left(\begin{array}{c}\beta_1\\\beta_2\\\beta_3\\\beta_4\\\beta_5\\\beta_6\end{array}\right)$
			<pre></pre> A	B		γ) \B	

$\left(\begin{array}{c}A_{1}B_{1}\\A_{2}\end{array}\right)$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1	0	1	1	0	
A_1B_1	1	1	0	1	1	0	
A_1B_2	1	1	0	-1	-1	0	
A_1B_2	1	1	0	-1	-1	0	$\langle \beta_1 \rangle$
A_2B_1	1	0	1	1	0	1	β_2
A_2B_1	1	0	1	1	0	1	β_3
A_2B_2	1	0	1	-1	0	-1	β_4
A_2B_2	1	0	1	-1	0	-1	eta_5
A_3B_1	1	-1	-1	1	-1	-1	β_6
A_3B_1	1	-1	-1	1	-1	-1	
A_3B_2	1	-1	-1	-1	1	1	
$\langle A_3B_2 \rangle$	1	-1	-1	-1	1	1 /	

 H_0 : main factor A effect = 0

(A_1B_1)		/ 1	1	0	1	1	0 \			
A_1B_1		1	1	0	1	1	0			
A_1B_2		1	1	0	-1	-1	0			
A_1B_2		1	1	0	-1	-1	0	$\langle \beta_1 \rangle$		
A_2B_1		1	0	1	1	0	1	β_2		
A_2B_1		1	0	1	1	0	1	β_3		
A_2B_2		1	0	1	-1	0	-1	β_4		
A_2B_2		1	0	1	-1	0	-1	eta_5		
A_3B_1		1	-1	-1	1	-1	-1	β_6		
A_3B_1		1	-1	-1	1	-1	-1			
A_3B_2		1	-1	-1	-1	1	1			
$\langle A_3B_2 \rangle$		1	-1	-1	-1	1	1)			
H_0 : main factor A effect = 0										
$H_0:ceta$	$H_0: c\beta = 0$ where $c = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$									

U

U

0

U

(A_1B_1)	/ 1	1	0	1	1	0 \	
A_1B_1	1	1	0	1	1	0	
A_1B_2	1	1	0	-1	-1	0	
A_1B_2	1	1	0	-1	-1	0	$\langle \beta_1 \rangle$
A_2B_1	1	0	1	1	0	1	eta_2
A_2B_1	1	0	1	1	0	1	eta_3
A_2B_2	1	0	1	-1	0	-1	β_4
A_2B_2	1	0	1	-1	0	-1	eta_5
A_3B_1	1	-1	-1	1	-1	-1	β_6
A_3B_1	1	-1	-1	1	-1	-1	
A_3B_2	1	-1	-1	-1	1	1	
$\langle A_3B_2 \rangle$	1	-1	-1	-1	1	1 /	

 H_0 : interaction effect = 0

$\begin{pmatrix} A_1B_1\\A_1B_1\\A_2B_2 \end{pmatrix}$		$\begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$	1 1 1	0 0 0	1 1 -1	1 1	0 \ 0			
$egin{array}{c} A_1B_2\ A_1B_2 \end{array}$		1	1	0	-1	$-1 \\ -1$	0 0	β_1		
A_2B_1		1	0	1	1	0	1	β_2		
A_2B_1		1	0	1	1	0	1	$oldsymbol{eta}_3$		
A_2B_2		1	0	1	-1	0	-1	eta_4		
A_2B_2		1	0	1	-1	0	-1	eta_5		
A_3B_1		1	-1	-1	1	-1	-1	β_6		
A_3B_1		1	-1	-1	1	-1	-1			
A_3B_2		1	-1	-1	-1	1	1			
$\langle A_3B_2 \rangle$		1	-1	-1	-1	1	1)			
H_0 : interaction effect = 0										
$H_0:ceta$	$H_0: c\beta = 0$ where $c = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$									

U

U

U

(A_1B_1)	/ 1	1	0	1	1	0 \	
A_1B_1	1	1	0	1	1	0	
A_1B_2	1	1	0	-1	-1	0	
A_1B_2	1	1	0	-1	-1	0	$\langle \beta_1 \rangle$
A_2B_1	1	0	1	1	0	1	eta_2
A_2B_1	1	0	1	1	0	1	β_3
A_2B_2	1	0	1	-1	0	-1	β_4
A_2B_2	1	0	1	-1	0	-1	eta_5
A_3B_1	1	-1	-1	1	-1	-1	β_6
A_3B_1	1	-1	-1	1	-1	-1	
A_3B_2	1	-1	-1	-1	1	1	
$\setminus A_3B_2$	1	-1	-1	-1	1	1 /	

 H_0 : mean cell $A_1B_1 = 0$

$\left(egin{array}{c} A_1 B_1 \\ A_1 B_1 \\ A_1 B_2 \\ A_1 B_2 \\ A_2 B_1 \\ A_2 B_1 \\ A_2 B_1 \\ A_2 B_2 \\ A_2 B_2 \\ A_3 B_1 \\ A_3 B_1 \\ A_3 B_1 \\ A_3 B_2 \\ A_2 B_2 \end{array} ight)$		$\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	$ \begin{array}{c} 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ -1\\ -1\\ -1\\ -1\\ -1 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ $	$ \begin{array}{c} 1\\ -1\\ -1\\ 1\\ -1\\ -1\\ 1\\ -1\\ -1\\ -1\\ -1$	$ \begin{array}{c} 1\\ -1\\ -1\\ 0\\ 0\\ 0\\ -1\\ -1\\ 1\\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $	$\left(egin{array}{c} eta_1 \ eta_2 \ eta_3 \ eta_4 \ eta_5 \ eta_6 \end{array} ight)$	
$\left(egin{array}{c} A_3B_2 \ A_3B_2 \end{array} ight)$		1	-1 -1	$-1 \\ -1$	-1 -1	1 1	1 1 /		
$H_0 : \text{mean cell } A_1 B_1 = 0$									

 $H_0: ceta = 0 \;\; ext{where} \;\; c = egin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$

For more examples

- The FSL folks have a bunch of great examples
 - http://www.fmrib.ox.ac.uk/fsl/feat5/detail.html
- Check the FSL help list regularly
 - Subscribe at jiscmail
 - Often others have already asked your questions!