Diffusion Tensor Imaging - basic principles

- Diffusion in brain tissues
- Apparent Diffusion Coefficient
- Diffusion Tensor model
- Tensor-derived measures
Diffusion Tensor Imaging (DTI)

Diffusion Tensor Model. In each voxel:

$$S_j = S_0 \exp(-b_j \mathbf{x}_j^T \mathbf{D} \mathbf{x}_j)$$

<table>
<thead>
<tr>
<th>b-value for gradient j (known)</th>
<th>Unit vector representing the direction of gradient j (known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal measured after applying a Gradient j with direction \mathbf{x}_j and b-value b_j (measured)</td>
<td>3x3 Diffusion Tensor (unknown)</td>
</tr>
</tbody>
</table>
The Elements of the Diffusion Tensor

Tensor is symmetric (6 unknowns)

- **Diagonal Elements** are proportional to the diffusion displacement variances (ADCs) along the three directions of the experiment coordinate system

- **Off-diagonal Elements** are proportional to the correlations (covariances) of displacements along these directions

\[
D = \begin{bmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{xy} & D_{yy} & D_{yz} \\
D_{xz} & D_{yz} & D_{zz}
\end{bmatrix}
\]

\[N_3 (0, 2tD)\]
Why do we need a tensor?

\[\Delta x \quad \Delta y \]
Why do we need a tensor?
Why do we need a tensor?

\[
\begin{bmatrix}
D_x & D_{xy} \\
D_{xy} & D_y
\end{bmatrix}
\]
Once D is estimated, we get ADCs along the scanner’s coordinate system. But we want ADCs along a local coordinate system in each voxel, determined by the anatomy.
The Diffusion Tensor Eigenspectrum

Once D is estimated, we get ADCs along the scanner’s coordinate system. But we want ADCs along a local coordinate system in each voxel, determined by the anatomy.

Diagonalize the estimated tensor in each voxel

$$D = \begin{bmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{xy} & D_{yy} & D_{yz} \\
D_{xz} & D_{yz} & D_{zz}
\end{bmatrix}$$

$D = [v_1|v_2|v_3]^T \begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{bmatrix} [v_1|v_2|v_3]$
The Diffusion Tensor Ellipsoid

Isotropic voxel

\[\lambda_1 \approx \lambda_2 \approx \lambda_3 \]

Anisotropic voxel

\[\lambda_1 \gg \lambda_2, \lambda_3 \]

\[\mathbf{v}_1 \sqrt{2 \tau \lambda_1} \]

\[\mathbf{v}_2 \sqrt{2 \tau \lambda_2} \]

\[\mathbf{v}_3 \sqrt{2 \tau \lambda_3} \]
The Diffusion Tensor Ellipsoid

- CSF
- Grey matter
- White matter
Quantitative Diffusion Maps

Fractional Anisotropy (FA) \sim \text{Eigenvalues Variance (normalised)}

Mean Diffusivity (MD) = \text{Eigenvalues Mean}

\[FA = \sqrt{\frac{3 \sum_{i=1}^{3} (\lambda_i - \bar{\lambda})^2}{2 \sum_{i=1}^{3} \lambda_i^2}}, \quad FA \text{ in } [0,1] \]

\[MD = \frac{D_{xx} + D_{yy} + D_{zz}}{3} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3} \]
Quantitative Diffusion Maps
Quantitative Diffusion Maps

FA

MD

Longitudinal/axial/parallel ADC \((\lambda_1)\)

Transverse/radial/perpendicular ADC \((\lambda_2 + \lambda_3)/2\)
Quantitative Diffusion Maps

FA decrease/ MD increase has been associated in many studies with tissue breakdown (loss of structure).

Fractional Anisotropy changes in MS normal appearing white matter
Quantitative Diffusion Maps

FA decrease/ MD increase has been associated in many studies with tissue breakdown (loss of structure).

Fractional Anisotropy changes in MS normal appearing white matter
Quantitative Diffusion Maps

Different scenarios can have same effect on FA, MD

- Swelling
- Higher Density
- Myelin Loss
- Cell Death
Tensor and FA in Crossing Regions

- In voxels containing two crossing bundles, FA is low and the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
- In voxels containing two crossing bundles, FA is low and the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
Diffusion Tensor Ellipsoids
Estimates of Principal Fibre Orientation in WM

Assumption!!

Direction of maximum *diffusivity* in voxels with anisotropic profile is an estimate of the major fibre orientation.
Estimates of Principal Fibre Orientation in WM
Directional contrast in DTI